
ledger2beancount
Ledger to Beancount converter

Stefano Zacchiroli Martin Michlmayr

June 2019

Contents

Introduction 2

Installation 2
Arch Linux . 3
Debian . 3
macOS . 3
Microsoft Windows . 3

Configuration 4

Usage 4

Beancount compatibility 5

Features 5
Accounts . 6
Amounts . 7
Commodities . 7
Flags . 7
Dates . 8
Auxiliary dates . 8
Transaction codes . 8
Narration . 8
Payees . 8
Metadata . 10
Tags . 10
Links . 11
Comments . 12
Virtual costs . 12

1

Lots . 12
Balance assertions and assignments . 13
Automated transactions . 14
Periodic transactions . 14
Virtual postings . 14
Inline math . 14
Implicit conversions . 15
Fixated prices and costs . 15
hledger syntax . 15
Ignoring certain lines . 16

Unsupported features 17
Unsupported in beancount . 17
Unsupported in ledger2beancount . 17

Configuration options 17
Input options . 17
Other options . 18

Bugs and contributions 19

Introduction

ledger2beancount is a script to automatically convert Ledger-based textual ledgers to
Beancount ones.

Conversion is based on (concrete) syntax, so that information that is not meaningful for
accounting reasons but still valuable (e.g., comments, formatting, etc.) can be preserved.

ledger2beancount aims to be compatible with the latest official release of beancount.

Installation

ledger2beancount is a Perl script and relies on the following Perl modules:

• Config::Onion
• Date::Calc
• DateTime::Format::Strptime
• File::BaseDir
• Getopt::Long::Descriptive
• String::Interpolate
• YAML::XS

You can install the required Perl modules with cpanminus:

2

https://www.ledger-cli.org/
http://furius.ca/beancount/
https://metacpan.org/pod/distribution/App-cpanminus/bin/cpanm

cpanm --installdeps .

If you use Debian, you can install the dependencies with this command:

sudo apt install libconfig-onion-perl libdate-calc-perl \
libfile-basedir-perl libyaml-libyaml-perl \
libgetopt-long-descriptive-perl libdatetime-format-strptime-perl \
libstring-interpolate-perl

Note that String::Interpolate (libstring-interpolate-perl) is not in Debian stable.

ledger2beancount itself consists of one script. You can clone the repository and run the
script directly or copy it to $HOME/bin or a similar location:

git clone https://github.com/zacchiro/ledger2beancount/
./bin/ledger2beancount examples/simple.ledger

Arch Linux

ledger2beancount is available on AUR.

Debian

ledger2beancount is available in Debian.

macOS

You can install cpanm from Homebrew:

brew install cpanminus

Microsoft Windows

You can install Strawberry Perl on Windows and use cpanm as described above to install
the required Perl modules. ledger2beancount is not packaged for Windows but you can
clone this Git repository and run the script.

3

https://aur.archlinux.org/packages/ledger2beancount/
https://packages.debian.org/ledger2beancount
http://strawberryperl.com/

Configuration

ledger2beancount can use a configuration file. It will search for the config file
ledger2beancount.yml in the current working directory. If that file is not found, it
will look for $HOME/.config/ledger2beancount/config.yml. You can also pass an
alternative config file via --config/-c. The file must end in .yml or .yaml. See the
sample config file for the variables you can use.

While the configuration file is optional, you may have to define a number of variables
for ledger2beancount to work correctly with your ledger files:

• ledger_indent sets the indentation level used in your ledger file (by default 4).
• date_format has to be configured if you don’t use the date format YYYY-MM-DD.
• decimal_comma has to be set to true if you use commas as the decimal separator

(for example, 10,12 EUR meaning 10 Euro and 12 cents).
• commodity_map defines mappings from ledger to beancount commodities. You

have to set this if you use commodity codes like € or £ (to map them to EUR and
GBP, respectively).

Additionally, these options are useful to configure beancount:

• operating_currencies: a list of the currencies you frequently use.
• beancount_header: a file which is embedded at the beginning of the converted

beancount file which can include beancount option statements, plugin directives,
query information and more.

Other variables can be set to use various functionality offered by ledger2beancount.
Please read the section on features to learn about these variables and refer to the com-
plete list of configuration options at the end of the manual.

Usage

ledger2beancount accepts input from stdin or from a file and will write the converted
data to stdout. You can run ledger2beancount like this on the example provided:

ledger2beancount examples/simple.ledger > simple.beancount

After you convert your ledger file, you should validate the generated beancount file with
bean-check and fix all errors:

bean-check simple.beancount

4

You should also inspect the generated beancount file to see if it looks correct to you.
Please note that ledger2beancount puts notes at the beginning of the generated bean-
count file if it encounters problems with the conversion.

If you believe that ledger2beancount could have produced a better conversion or if you
get an error message from ledger2beancount, please file a bug along with a simple test
case.

You can pipe the output of ledger2beancount to beancount’s bean-format if you want to
use the conversion as an opportunity to reformat your file.

Beancount compatibility

The syntax of beancount is quite stable but it’s expected to become slightly less restric-
tive as some missing features are implemented (such as posting-level tags).

ledger2beancount aims to be compatible with the latest official release of beancount, but
some functionality may require an unreleased version of beancount. You can install the
latest development version of beancount directly from the beancount repository:

pip3 install hg+https://bitbucket.org/blais/beancount/

Currently, there are no features that require an unreleased version of beancount.

ledger2beancount is largely compatible with Beancount 2.0. If you use the following
features, you need Beancount 2.1:

• UTF-8 letters and digits in account names
• Full-line comments in transactions
• Transaction tags on multiple lines

Features

ledger2beancount supports most of the syntax from ledger. It also offers some features
to improve the conversion from ledger to beancount.

If you’re new to beancount, we suggest you read this section in parallel to the illustrated
ledger file provided. This example ledger file explains differences between ledger and
beancount, shows how ledger syntax is converted to beancount and describes how you
can use the features described in this section to improve the conversion from ledger to
beancount. The illustrated example uses the same subsections as this section, so it’s
easy to follow in parallel.

You can convert the illustrated ledger file to beancount like this:

5

https://github.com/zacchiro/ledger2beancount/issues
../examples/illustrated.ledger
../examples/illustrated.ledger

ledger2beancount --config examples/illustrated.yml examples/illustrated.ledger

But please be aware that it doesn’t pass bean-check. See the comments in the file as
to why.
Note on regular expressions: many of the features described below require you to
specify regular expressions in ledger2beancount configuration file. The expected syntax
(and semantics) for all such values is that of Perl regular expressions.

Accounts

ledger2beancount will convert ledger account declarations to beancount open statements
using the account_open_date variable as the opening date. The note is used as the
description.
Unlike ledger, beancount requires declarations for all account names. If an account was
not declared in your ledger file but used, ledger2beancount will automatically create an
open statement in beancount. You can turn this off by setting automatic_declarations
to false. This is useful if you have include files and run ledger2beancount several
times since duplicate open statements for the same account will result in an error from
beancount.
ledger2beancount replaces ledger account names with valid beancount accounts and
therefore performs the following transformations automatically:

1. Replaces space and other invalid characters with dash (Liabilities:Credit Card
becomes Liabilities:Credit-Card)

2. Replaces account names starting with lower case letters with upper case letters
(Assets:test becomes Assets:Test)

3. Ensures the first letter is a letter or number by replacing a non-letter first character
with an X.

While these transformations lead to valid beancount account names, they might not be
what you desire. Therefore, you can add account mappings to account_map to map
the transformed account names to something different. The mapping will work on your
ledger account names and on the account names after the transformation.
Unlike ledger, beancount expects all account names to start with one of five account
types, also known as root names. The default root names are Assets, Liabilities,
Equity, Expenses, and Income. If you want to use other root names, you can config-
ure them using the beancount options name_assets, name_liabilities, name_equity,
name_expenses, and name_income.
If you use more than five root names, you will have to rename them. ledger2beancount
offers the account_regex option to mass rename account names. If you use the top-level
root name Accrued to track accounts payable and accounts receivable, you can rename
them with this account_regex config option:

6

https://perldoc.perl.org/perlre.html#Regular-Expressions

account_regex:
^Accrued:Accounts Payable:(.*): Liabilities:Accounts-Payable:$1
^Accrued:Accounts Receivable:(.*): Assets:Accounts-Receivable:$1

Ledger’s apply account and alias directives are supported. The mapping of account
names described above is done after these directives.

Amounts

In ledger, amounts can be placed after the amount. This is converted to beancount with
the the amount first, followed by the commodity.

If you use commas as the decimal separator (i.e. values like 10,12, using the ledger option
--decimal-comma) you have to set the decimal_comma option to true. Please note that
commas are not supported as the decimal separator in beancount at the moment (issue
204) so your amounts are converted not to use comma as the decimal separator.

Commas as separators for thousands (e.g. 1,000,000) are supported by beancount.

Commodities

Like accounts, ledger2beancount will convert ledger commodity declarations to bean-
count. The note is converted to name. As with account names, ledger2beancount
will create commodity statements for all commodities used in your ledger file (if
automatic_declarations is true).

ledger2beancount will automatically convert commodities to valid beancount commodi-
ties. This involves replacing all invalid characters with a dash (a character allowed in
beancount commodities but not in ledger commodities), stripping quoted commodities,
making the commodity uppercase and limiting it to 24 characters. Furthermore, the first
character will be replaced with an X if it’s not a letter and the same will be done for the
last character if it’s not a letter or digit. Finally, all beancount commodities currently
have to consist of at least two characters (issue 192).

If you require a mapping between ledger and beancount commodities, you can use
commodity_map. You can use your ledger commodity names or the names after the
transformation in the map to perform a mapping to another commodity name.

Commodity symbols (like $, € and £) are supported and converted to their respective
commodity codes (like USD, EUR, GBP). Update commodity_map if you use other symbols.

Flags

ledger2beancount supports both transaction flags (transaction state) and account flags
(state flags).

7

https://bitbucket.org/blais/beancount/issues/204
https://bitbucket.org/blais/beancount/issues/204
https://bitbucket.org/blais/beancount/issues/192
https://www.ledger-cli.org/3.0/doc/ledger3.html#Transaction-state
https://www.ledger-cli.org/3.0/doc/ledger3.html#State-flags

Dates

ledger supports a wide range of date formats whereas beancount requires all dates in the
format YYYY-MM-DD (ISO 8601). The variable date_format has to be set if you don’t
use ISO 8601 for the dates in your ledger file. date_format uses the same format as the
ledger options --input-date-format and --date-format (see man 1 date).

Ledger allows dates without a year if the year is declared using the Y, year and apply
year directives. If date_format_no_year is set, ledger2beancount can convert such
dates to YYYY-MM-DD.

Posting-level dates are recognized by ledger2beancount and stored as metadata according
to the postdate_tag (date by default) but this has no effect in beancount. There is a
proposal to support this functionality in a different way, but this is not implemented in
beancount yet.

While ledger2beancount itself doesn’t read your ledger config file, the script
ledger2beancount-ledger-config can be used to parse your ledger config file
(~/.ledgerrc) or your ledger file (ledger files may contain ledger options) to output
the correct config option for ledger2beancount.

Auxiliary dates

Beancount currently doesn’t support ledger’s auxiliary dates (or effective dates; also
known as date2 in hledger) (but there is a proposal to support this functionality in a
different way), so these are stored as metadata according to the auxdate_tag variable.
Unset the variable if you don’t want auxiliary dates to be stored as metadata. Account
and posting-level auxiliary dates are supported.

Transaction codes

Beancount doesn’t support ledger’s transaction codes. These are therefore stored as
metatags if code_tag is set.

Narration

The ledger payee information, which is generally used as free-form text to describe the
transaction, is stored in beancount’s narration field and properly quoted.

Payees

Ledger has limited support for payees. A payee metadata key can be set but this
also overrides the free-form text to describe the transaction. Payees can also be declared

8

https://docs.google.com/document/d/1x0qqWGRHi02ef-FtUW172SHkdJ8quOZD-Xli7r4Nl_k/
https://docs.google.com/document/d/1x0qqWGRHi02ef-FtUW172SHkdJ8quOZD-Xli7r4Nl_k/
https://www.ledger-cli.org/3.0/doc/ledger3.html#Auxiliary-dates
https://docs.google.com/document/d/1x0qqWGRHi02ef-FtUW172SHkdJ8quOZD-Xli7r4Nl_k/
https://www.ledger-cli.org/3.0/doc/ledger3.html#Codes

explicitly in ledger but this is not required by beancount, so such declarations are ignored
(they are preserved as comments).
hledger allows the separation of payee and narration using the pipe character (payee |
narration). This is supported by ledger2beancount if the hledger option is enabled.
Since ledger has limited support for payees, ledger2beancount offers several features to
determine the payee from the transaction itself.
You can set payee_split and define a list of regular expressions which allow you to
split ledger’s payee field into payee and narration. You have to use regular expressions
with the named capture groups payee and narration. For example, given the ledger
transaction header

2018-03-18 * Supermarket (Tesco)

and the configuration

payee_split:
- (?<narration>.*?)\s+\((?<payee>Tesco)\)

ledger2beancount will create this beancount transaction header:

2018-03-18 * "Tesco" "Supermarket"

In other words, payee_split allows you to split the ledger payee into payee and narration
in beancount. payee_split is a list of regular expressions and ledger2beancount stops
when a match is found.
Furthermore, you can use payee_match to match based on the ledger payee field and
assign payees according to the match. This variable is a list consisting of regular expres-
sions and the corresponding payees. For example, if your ledger contains a transaction
like:

2018-03-18 * Oyster card top-up

you can use

payee_match:
- ^Oyster card top-up: Transport for London

to match the line and assign the payee Transport for London:

2018-03-18 * "Transport for London" "Oyster card top-up"

9

Unlike payee_split, the full payee field from ledger is used as the narration in bean-
count. Again, ledger2beancount stops after the first match. Beancount comes with a
plugin called fix_payees which offers a similar functionality to payee_match: it re-
names payees based on a set of rules which allow you to match account names, payees
and the narration. The difference is that ledger2beancount’s payee_match will write the
matched payee to the beancount file whereas the fix_payees plugin leaves your input
file intact and assigns the new payee within beancount.
Please note that the payee_match is done after payee_split and payee_match is eval-
uated even if payee_split matched. This allows you to remove some information from
the narration using payee_split while overriding the found payee using payee_match.
The regular expressions from payee_split and payee_match are evaluated in a case
sensitive manner by default. If you want case insensitive matches, you can prefix your
pattern with (?i), for example:

payee_match:
- (?i)^Oyster card top-up: Transport for London

Finally, metadata describing a payee or payer will be used to set the payee. The tags
used for that information can be specified in payee_tag and payer_tag. Payees identi-
fied with these tags will override the payees found with payee_split and payee_match
(although in the case of payee_split the narration will be modified as per the reg-
ular expression). This allows you to define generic matches using payee_split and
payee_match and override special cases using metadata information.

Metadata

Account and posting metadata are converted to beancount syntax. Metadata keys used
in ledger can be converted to different keys in beancount using metadata_map. Metadata
can also be converted to links (see below).
Beancount is more restrictive than ledger in what it allows as metadata keys.
ledger2beancount will automatically convert metadata keys to valid beancount meta-
data keys. This involves replacing all invalid characters with a dash and making sure
the first character is a lowercase letter (either by lowercasing a letter or adding the
prefix x).
ledger2beancount also supports typed metadata (i.e. key:: instead of key:) and doesn’t
quote the values accordingly, but you should make sure the values are valid in beancount.

Tags

Beancount allows tags for transactions but currently doesn’t support tags for postings
(issue 144). Because of this, posting-level tags are currently stored as metadata with the

10

https://www.ledger-cli.org/3.0/doc/ledger3.html#Typed-metadata
https://bitbucket.org/blais/beancount/issues/144

key tags. This should be seen as a workaround because metadata with the key tags is
not treated the same way by beancount as proper tags.

Ledger’s apply tag directive is supported. If the string to apply is metadata or a link
(according to link_match, see below), the information will be added to each transaction
between apply tag and end tag. If it’s a tag, beancount’s equivalent of apply tag is
used (pushtag and poptag).

Note that tags can be defined in ledger using a tag directive. This is not required in
beancount and there’s no equivalent directive so all tag directives are skipped.

Links

Beancount differentiates between tags and links whereas ledger doesn’t. Links can be
used in beancount to link several transactions together. ledger2beancount offers two
mechanisms to convert ledger tags and metadata to links.

First, you can define a list of metadata tags in link_tags whose values should be
converted to beancount links instead of metadata. For example:

link_tags:
- Invoice

with the ledger input

2018-03-19 * Invoice 4
; Invoice:: 4

will be converted to

2018-03-19 * Invoice 4 ^4

instead of

2018-03-19 * Invoice 4 #4

Tags are case insensitive. Be aware that the metadata must not contain any whitespace.

Since posting-level links are currently not allowed in beancount, they are stored as
metadata.

Second, you can define regular expressions in link_match to determine that a tag
should be rendered as a link instead. For example, if you tag your trips in the for-
mat YYYY-MM-DD-foo, you could use

11

link_match:
- ^\d\d\d\d-\d\d-\d\d-

to render them as links. So the ledger transaction header

2018-02-02 * Train Brussels airport to city
; :2018-02-02-brussels-fosdem:debian:

would become the following in beancount:

2018-02-02 * "Train Brussels airport to city" ^2018-02-02-brussels-fosdem #debian

Comments

Comments are supported.

Currently, beancount doesn’t accept top-level comments with the | marker (issue 282).
ledger2beancount changes such comments to use the ; marker.

Virtual costs

Beancount does not have a concept of virtual costs (issue 248). ledger2beancount there-
fore treats them as regular costs (or, rather, as regular prices).

Lots

Lot costs and prices are supported, including per-unit and total lot costs. Lot dates and
lot notes are converted to beancount.

The behaviour of ledger and beancount is different when it comes to costs. In ledger,
the statement

Assets:Test 10.00 EUR @ 0.90 GBP

creates the lot 10.00 EUR {0.90 GBP}. In beancount, this is not the case and a cost is
only associated if done so explicitly:

Assets:Test 10.00 EUR {0.90 GBP}

12

https://bitbucket.org/blais/beancount/issues/282
https://www.ledger-cli.org/3.0/doc/ledger3.html#Virtual-posting-costs
https://bitbucket.org/blais/beancount/issues/248

This makes automatic conversion tricky because some statements should be simple con-
versions without associating a cost whereas it’s vital to preserve the cost in other con-
versions.
Generally, it doesn’t make sense to preserve the cost for currency conversion (as opposed
to conversions involving commodities like shares and stocks). Since most currency codes
consist of 3 characters (EUR, GBP, USD, etc), the script makes a simple conversion (10.00
EUR @ 0.90 GBP) if both commodities consist of 3 characters. Otherwise it associates a
cost (1 LU0274208692 {48.67 EUR}). Since some 3 character symbols might be com-
modities instead of currencies (e.g. ETH and BTH), the currency_is_commodity variable
can be used to treat them as commodities and associate a cost in conversions. Similarly,
commodity_is_currency can be used to configure commodities that should be treated
as currencies in the sense that no cost is retained. This is useful if you, for example,
track miles or hotel points that are sometimes redeemed for a cash value. Both of these
variables expect beancount commodities, i.e. after transformation and mapping. (Note
that beancount itself uses the terms “commodity” and “currency” interchangeably.)

Balance assertions and assignments

Ledger balance assertions are converted to beancount balance statements.
Please note that beancount evaluates balance assertions at the beginning of the day
whereas ledger evaluates them at the end of the day (up to ledger 3.1.1) or at the
end of the transaction (newer versions of ledger). Therefore, we schedule the balance
assertion for the day after the original transaction. This assumes that there are no other
transactions on the same day that change the balance again for this account.
In addition to balance assertions, ledger also supports balance assignments.
ledger2beancount can handle some, but not all types of balance assertions. The
most simple case is something like:

2012-03-10 KFC
Expenses:Food $20.00
Assets:Cash = $50.00

which can be handled like a balance assertion. However, ledger also allows transactions
with two null postings when there’s a balance assignment, as in:

2012-03-10 KFC
Expenses:Food $20.00
Expenses:Drink
Assets:Cash = $50.00

This can’t be handled by ledger2beancount. While ledger can calculate how much you
spent in Assets:Cash and balance it with Expenses:Drink, ledger2beancount can’t.

13

https://www.ledger-cli.org/3.0/doc/ledger3.html#Balance-assertions
https://www.ledger-cli.org/3.0/doc/ledger3.html#Balance-assignments

The transformation of this transaction will lead to two null postings, which bean-check
will flag as invalid.

Finally, ledger allows transactions solely consisting of two null postings when one has a
balance assignment:

2012-03-10 Adjustment
Assets:Cash = $500.00
Equity:Adjustments

ledger2beancount will create a beancount pad statement, followed by a balance state-
ment the following day, to set the correct balance.

Automated transactions

Ledger’s automated transactions are not supported in beancount. They are added as
comments to the beancount file.

Periodic transactions

Ledger’s periodic transactions are not supported in beancount. They are added as
comments to the beancount file.

Virtual postings

Ledger’s concept of virtual postings does not exist in beancount. Ledger has two types
of virtual postings: those in parentheses ((Budget:Food)) which don’t have to balance
and those in brackets ([Budget:Food]) which have to balance. The former violate the
accounting equation and can’t be converted to beancount. The latter can be converted by
making them into “real” accounts. ledger2beancount will do this if the convert_virtual
option is set to true. By default, ledger2beancount will simply skip all virtual postings.

If you set convert_virtual to true, be aware that all account names have to start with
one of five assets classes (Assets, etc). This is often not the case for virtual postings,
so you will have to rename or map these account names.

Inline math

Very simple inline math is supported in postings. Specifically, basic multiplications and
divisions are supported, such as shown in the following transactions:

14

https://www.ledger-cli.org/3.0/doc/ledger3.html#Resetting-a-balance
https://www.ledger-cli.org/3.0/doc/ledger3.html#Automated-Transactions
https://www.ledger-cli.org/3.0/doc/ledger3.html#Periodic-Transactions
https://www.ledger-cli.org/3.0/doc/ledger3.html#Virtual-postings

2018-03-26 * Simple inline math
Assets:Test1 1 GBP @ (1/1.14 EUR)
Assets:Test2 -0.88 EUR

2018-03-26 * Simple inline math
Assets:Test1 (1 * 3 GBP)
Assets:Test2 -3 GBP

Support for more complex inline math would require substantial changes to the parser.

Implicit conversions

ledger allows implicit conversions under some circumstances, such as in this example:

2019-01-29 * Implicit conversion
Assets:A 10.00 EUR
Assets:B -11.42 USD

They are generally a bad idea since they make it very easy to hide problems that are
hard to track down. beancount doesn’t support implicit conversions.

ledger2beancount supports implicit conversions if there are only two postings in a trans-
action (the most common case). More complex implicit conversations are not supported.

Fixated prices and costs

ledger allows you to “fix” the cost or price at the time of a transaction, which means the
amount will not be revalued subsequently when the price of the commodity changes in
the pricedb. beancount doesn’t have a notion of a fixated price or cost.

However, you can achieve the same result in beancount. ledger2beancount will always
convert ledger fixated prices and costs to costs in beancount. This way, the original cost
is always attached to the transaction. You can then use SUM(COST(position)) to get
the original value.

hledger syntax

The syntax of hledger is largely compatible with that of ledger. If the hledger config
option is set to true, ledger2beancount will look for some hledger specific features:

1) hledger allows the separation of a transaction’s description into payee and note
(narration) using the pipe character (payee | narration).

15

https://www.ledger-cli.org/3.0/doc/ledger3.html#Fixated-prices-and-costs
http://hledger.org/
http://hledger.org/journal.html#payee-and-note

2) hledger allows date: and date2: to specify posting dates in posting comments in
addition to ledger’s [date=date2] syntax.

3) The syntax of tags is different in hledger: tag1: tag2:, tag3: in hledger vs
:tag1:tag2:tag3: in ledger.

Ignoring certain lines

Sometimes it makes sense to exclude certain lines from the conversion. For example,
you may not want a specific include directive to be added to the beancount file if the
file contains ledger-specific definitions or directives with no equivalence in beancount.

ledger2beancount allows you to define a marker in the config file as ignore_marker. If
this marker is found as a ledger comment on a line, the line will be skipped and not
added to the beancount output. For example, given the config setting

ignore_marker: NoL2B

you could do this:

C 1.00 Mb = 1024 Kb ; NoL2B

If you want to skip several lines, you can use $ignore_marker begin and
$ignore_marker end. This syntax is also useful for ledger include directives,
which don’t allow a comment on the same line.

; NoL2B begin
include ledger-specific-header.ledger
; NoL2B end

Since some people use ledger and beancount in parallel using ledger2beancount, it is
sometimes useful to put beancount-specific commands in the input file. Of course, they
may not be valid in ledger. Therefore, you can put a commented out line in the ledger
input, mark it with the $keep_marker and ledger2beancount will uncomment the line
and put it in the output.

Given the input

; 2013-11-03 note Liabilities:CreditCard "Called about fraud" ; L2Bonly

ledger2beancount will add the following line to the beancount output:

2013-11-03 note Liabilities:CreditCard "Called about fraud"

16

http://hledger.org/journal.html#posting-dates

You can also use $keep_marker begin and $keep_marker end to denote multiple lines
that should be included in the output:

; L2Bonly begin
; 2014-07-09 event "location" "Paris, France"
; 2018-09-01 event "location" "Bologna, Italy"
; L2Bonly end

Unsupported features

Unsupported in beancount

The following features are not supported in beancount and therefore commented out
during the conversion from ledger to beancount:

• Automated transactions
• Commodity conversion (C AMOUNT1 = AMOUNT2)
• Commodity format (D AMOUNT)
• Commodity pricing: ignore pricing (N SYMBOL)
• Timeclock support (I, i, O, o, b, h)
• Periodic transactions

Unsupported in ledger2beancount

The following ledger features are currently not supported by ledger2beancount:

• The define directive

Contributions are welcome!

Configuration options

Input options

The following options may be needed for ledger2beancount to interpret your ledger files
correctly.

date_format The date format used in your ledger file (default: %Y-%m-%d).

date_format_no_year The date format for dates without the year when ledger’s
Y/year directive is used (default: %m-%d).

ledger_indent Sets the indentation level used in your ledger file (default: 4).

17

https://github.com/zacchiro/ledger2beancount/blob/master/docs/contributing.md

decimal_comma Parses amounts with the decimal comma (e.g. 10,00 EUR). Set this
option to true if you use option --decimal-comma in ledger.

hledger Tells ledger2beancount whether to attempt to parse hledger-specific features.

Other options

beancount_indent Sets the indentation level for the generated beancount file (default:
2).

operating_currencies A list of frequently used currencies. This is used by fava, the web
UI for beancount.

automatic_declarations Emit account and commodity declarations. (Default: true)

Note: the declarations done in ledger via account and commodity declarations are
always converted. If this option is true, declarations are created for those which
have not been explicitly declared in ledger but used.

account_open_date The date used to open accounts (default: 1970-01-01).

commodities_date The date used to create commodities (default: 1970-01-01).

beancount_header Specifies a file which serves as a beancount “header”, i.e. it’s put
at the beginning of the converted beancount file. You can use such a header to
specify options for beancount, such as option "title", define plugin directives
or beancount query information.

ignore_marker Specifies a marker that tells ledger2beancount to ignore a line if the
marker is found.

keep_marker Specifies a marker that tells ledger2beancount to take a line from the
input that is commented out, uncomment it and display it in the output.

convert_virtual Specifies whether virtual postings should be converted. If set to true,
virtual postings in brackets will be made into real accounts. (Virtual postings in
parentheses are always ignored, regardless of this option.)

account_map Specifies a hash of account names to be mapped to other account names.

account_regex Specifies a hash of regular expressions to replace account names.

commodity_map Specifies a mapping of ledger commodities to beancount commodities.

metadata_map Specifies a mapping of ledger metadata keys to corresponding bean-
count keys.

payee_tag Specify a metadata tag (after the mapping done by metadata_map) used to
set the payee.

payer_tag Specify a metadata tag (after the mapping done by metadata_map) used to
set the payee.

18

payee_split Specifies a list of regular expressions to split ledger’s payee field into payee
and narration. You have to use the named capture groups payee and narration.

payee_match Specifies a list of regular expressions and corresponding payees. The
whole ledger payee becomes the narration and the matched payee from the regular
expression becomes the payee.

postdate_tag Specifies the metadata tag to be used to store posting dates. (Use the
empty string if you don’t want the metadata to be added to beancount.)

auxdate_tag Specifies the metadata tag to be used to store auxiliary dates (also known
as effective dates; or date2 in hledger). (Use the empty string if you don’t want
the metadata to be added to beancount.)

code_tag Specifies the metadata tag to be used to store transaction codes. (Use the
empty string if you don’t want the metadata to be added to beancount.)

link_match Specifies a list of regular expressions that will cause a tag to be rendered
as a link.

link_tags Specifies a list of metadata tags whose values should be converted to bean-
count links instead of metadata. Tags are case insensitive and values must not
contain whitespace.

currency_is_commodity Specifies a list of commodities that should be treated as com-
modities rather than currencies even though they consist of 3 characters (which is
usually a characteristic of a currency). Expects beancount commodities (i.e. after
transformation and mapping).

commodity_is_currency Specifies a list of commodities that should be treated as cur-
rencies (in the sense that cost is not retained). Expects beancount commodities
(i.e. after transformation and mapping).

Bugs and contributions

If you find any bugs in ledger2beancount or believe the conversion from ledger to bean-
count could be improved, please open an issue. Please include a small test case so we
can reproduce the problem.

See the contributing guide for more information on how to contribute to ledger2beancount.

19

https://github.com/zacchiro/ledger2beancount/issues
contributing.md

	Introduction
	Installation
	Arch Linux
	Debian
	macOS
	Microsoft Windows

	Configuration
	Usage
	Beancount compatibility
	Features
	Accounts
	Amounts
	Commodities
	Flags
	Dates
	Auxiliary dates
	Transaction codes
	Narration
	Payees
	Metadata
	Tags
	Links
	Comments
	Virtual costs
	Lots
	Balance assertions and assignments
	Automated transactions
	Periodic transactions
	Virtual postings
	Inline math
	Implicit conversions
	Fixated prices and costs
	hledger syntax
	Ignoring certain lines

	Unsupported features
	Unsupported in beancount
	Unsupported in ledger2beancount

	Configuration options
	Input options
	Other options

	Bugs and contributions

